Trendy v měření

Vratislav Blažek Regional Sales Manager EE&Russia/CIS

March 16, 2017

We are the global network test, data and analytics experts.

90%+

of leading service providers choose us

employees in 25 countries and clients in 120 countries

Intelligence

Partnering with you to make your whole network smarter. Our test orchestration and real-time 3D analytics solutions help you adapt, transform, accelerate and excel.

"Good enough" network testing and data analytics just isn't good enough anymore.

© 2017 EXFO Inc. All rights reserved

How fast your Data center needs to scale?

DC global traffic – 5 ZB 2016/ 10.4 ZB 2019

Testing: Construction, Maintenance & Upgrades

ANSI/TIA-568.3-D (07-2016: Circulating for Default Ballot) Optical Fiber Cabling and Components Standard

Tier 1

each optical fiber link is measured for its **attenuation with an OLTS**. Fiber length verification may be obtained from cable sheath markings or via the OLTS. **Polarity** can be verified with the OLTS while performing attenuation tests. A visible light source, such as a VFL, can also be use to verify polarity.

Tier 2 (Optional)

Tier 2 testing supplements Tier 1 testing with the addition of an OTDR trace of the cabling link. The OTDR trace characterizes elements along a fiber link, including fiber segment length, attenuation uniformity and attenuation rate, connector location and insertion loss, splice location and splice loss, and other power loss events such as a sharp bend that may have been incurred during cable installation.

ISO-IEC 11801: 2010 (Ed. 2.2)

Generic cabling for customer premises

 Table B.2 – Test regime for reference conformance

 and installation conformance – Optical fibre cabling

Transmission parameter	Reference conformance testing	Installation conformance testing
Attenuation	N	N
Propagation delay ^a	I	1
Polarity	N	N
Length	1	1
Connector return loss ^b	N	N
where I = Informative (optional) testing. N = Normative (100 %) testing.		·
 Propagation delay is not a pass/fail criterion. 		

Tier 1 Certification Testing Review

•Test loss to pass/fail to maximum link loss budget

•Applies to any point-to-point or passive link

•Link Loss (dB), Length & Polarity check using Tier 1 test set

•Test procedure applies to both multimode and single mode testing

•All test access and reference cords must be reference-grade

Two very important things to remember

IBYC EXFO

4			EKFO war			
Feature	EXFO FIP-400	EXFO FIP-410B	EXFO FIP-420B	EXFO FIP-430B	EXFO FIP-425B	EXFO FIP-435B
Connectivity	Analog cable	Digital USB	Digital USB	Digital USB	WiFi	WiFi
Compatibility	FTB PC via USB adapter FOT-930	FTB, MaxTester, PC, IQS	FTB, MaxTester, PC, IQS	FTB, MaxTester, PC, IQS	FTB, MaxTester, PC, Android, IOS	FTB, MaxTester, PC, Android, IOS
Analysis	Phase OUT soon	NO	YES	YES	YES	YES
Auto center	NO	NO	YES	YES	YES	YES
P/F indicator	NO	NO	YES	YES	YES	YES
Auto focus	NO	NO	NO	YES	NO	YES

NEW « FIPT-400-MF » SCANLESS TIP

- > Long Reach for recessed panels
- > Fits in dense panels
- > Extremely easy to use
- > Error free, no risk of skipping a fiber
- > At least 5 times faster than current tips
- > No scanning knobs: Uses a trigger

Versatile solution with interchangeable Nozzles:

MPO/UPC, MPO/APC, Optitip MT (male/female) and even Q-ODC-12 (male/female)

- 3 captures for up to 2 rows
- Compatible with 12 or 16 fiber rows
- From 32 captures to 3

- Each capture will take 3-5 seconds
- Total capture+ analysis target 30 seconds for 12 fibers

REPORTING

Detailed view for each fiber

Fiber3 (Focus level: Good)

Encircled Flux Metric

Use EF-compliant instrument and change the reference-grade test jumpers as recommended REPEATABILITY, REPRODUCIBILITY and UNCERTAINTY

Various source filling conditions

Encircled Flux Metric vs Mandrel Wrap

OFL/Mandrel Wrap per TIA-426- 14-A, Method B Encircled Flux (EFL) TIA-426-14-B, Annex A Source: Optical loss testing in the field is not as simple as it seems, Belden (2011)

Coming to the rescue: WBMMF (SWDM)

Return Loss: the elephant in the room?

Reflectance	ISO/IEC 11801 (2010)	TIA-568.3-D (2013)	ISO-IEC 14763-3 (2014)*
MMF	20 dB	20 dB	35 dB
SMF	35 dB UPC	35dB UPC 55 dB analog video	45 dB UPC 60 dB APC

MPO connector

Oil Contamination

Oil contamination results in major changes to return loss (10 dB to 12 dB), but not insertion loss. However, contamination does lead to significant degradation of bit-error-rate test (BERT) performance.

Source: EXFO Application Note 327 - Touching on Failure: Sources of Fiber Optic Issues in the Data Center, December 2016

Simplex vs. Duplex

FasTesT	Link View	Detais	Results	↓	Fiber Certifier OLTS
Cable_Fiber	5 (OS1)				Start
Loss:	1310 nm	0.74 dB			FasTesT Duplex
	1550 nm	0.59 dB			
-					2 🕑 🖭
Main	0				Open Save New
	-			*	Main Menu
1	-				F40 P
	0				Identification
1	<u> </u>				Test Configuration
Cable Elber	6 (001)				
Caple_riber	0(051)	i			User Preferences
Loss:	1310 nm	0.35 dB			
	1550 nm	0.36 dB			
Lanath	750.2 m				
Lengur.	I vaore m			Store	$\bigcirc \bigcirc \bigcirc$
Default				Cable.olts	
FasTesT	Link View	Details	Results	\leftrightarrow	Fiber Certifier OLTS
Cable_Fiber	3 (OS1)				Start
Average Loss:	1310 nm	0.25 dB			FasTesT
	1550 nm	0.25 dB			
-					
Main	0			Remote	Open Save New
				*• ~	File And
					< Back
<u>•</u>					Open
					Save
					Save As
					The local diversion of
					New
					Report
Length:	510.2 m			Store	
Default				Cable.ots	()

DUPLEX Testing

- Two fibers at a time
- FasTesT to Power Meter port
- Enterprise/DataCenter approved method
- Available in SM and MM

SIMPLEX Testing

- One fiber at a time
- FasTesT to FasTesT port
- TelCo approved method
- Available in SM ONLY

OLTS FTBx-94X

- Same model range as the MAX-94X
- Compatible with the FTB-2/FTB-2PRO platform
- Available in stand alone purchase or in TK-2x kits
- Target customers include
- FTB-2 users

•

- Looking for modularity
- Looking for advanced optics, T/D and other applications

MAX-945iCERT OLTS: Link Certif. & Screening

492.8

nolex Fastest SMF - ORL

3/4

UNICORP Cable1

Certification of total loss budget (tier-1)

Tier 2 Testing

When and why is it needed in the Enterprise?

Primarily during maintenance as a troubleshooting tool

•OTDRs see the link from beginning to end. It's the only optical test device that can determine if there is a problem with the physical infrastructure, the severity, and where the problem exists.

Sometimes during construction and link acceptance

•When network won't turn up initially - troubleshooting cause and location

Complex networks

-Lots of connectors or splices

- -Higher speeds more sensitive to loss budget limits and reflections
- •Wide Area Networks (longer with many splices and higher speeds)

•Required by customer Service Level Agreement (SLA) as more complete documentation.

Tier 2 Certification

Newer test views simplify testing

OK Cancel

ų×

OTDR-IOLM – MPO TEST KIT SM 1X12

••	intelligent Optical Link M	1apper (0)					_	
Sou	rce iOLM Link View Elements Info Summary				📉 🚫 Fi	ail	s	tart
Lau	nch cable calibration: Within thresholds						Opt	imode
#	Filonamo	Link Length	Link Lo	ss (dB)	Link ORL (dB)		L	
"	riiename	(m)	1310 nm	1550 nm	Worst value			
1	23_1550 + 1310_01.iolm	62.1	1.073	1.032	51.87	\bigcirc		- •
2	23_1550 + 1310_02.iolm	62.1	0.911	0.957	51.83	\bigcirc	Open S	ave Cor
3	23_1550 + 1310_03.iolm	62.1	0.766	0.816	51.78	\bigcirc	Menu	Test Con
4	23_1550 + 1310_04.iolm	62.1	0.627	0.663	51.72	\bigcirc	Back	Hom
5	23_1550 + 1310_05.iolm	62.1	0.656	0.785	51.77	\bigcirc	Dack	
6	23_1550 + 1310_06.iolm	62.1	0.905	0.620	51.79	\bigcirc	Sel	ect
7	23_1550 + 1310_07.iolm	62.1	0.536	0.384	51.79	\bigcirc		
8	23_1550 + 1310_08.iolm	62.1	0.515	0.361	51.71	\bigcirc	Mar	ane
9	23_1550 + 1310_09.iolm	62.1	0.842	0.599	51.74	\bigcirc		uge
10	23_1550 + 1310_10.iolm	62.1	0.829	0.524	51.64	\bigcirc		
11								
12	23_1550 + 1310_12.iolm	62.1	1.626	1.418	52.22	$\mathbf{\odot}$		

Link Length Total link loss Link ORL Individual connection Insertion Loss Individual connection Return Loss Pass/ Fail diagnostic

							Туре			Pos. (m)	Loss (dB)		Reflectance (dB)	
IOL M	1310 nm	1550 nm									1310 nm	1550 nm	1310 nm	1550 nm
Link loss:	1.517 dB	1.103 dB								-39.2	-0.035	0.001		
Link ORL:	52.49 dB	54.29 dB	1			_ 1				-36.1	2.411	3.063	-57.3	-60.4
Туре	Pos. (m)	Loss	(dB)	Reflectar	nce (dB)				A	0.0	0 447	0.403	-76 5	-73.9
		1310 nm	1550 nm	1310 nm	1550 nm				-	20.2	0.370	0.160	7015	7515
	0.0	0.44/	0.403	-/6.5	-/3.9		-T-			30.3	0.370	0.109		
									0	62.4	0.688	0.530	-68.1	-69.3
										94.2			-76.2	-64.6

MPO Reference Verification [Fast Short Link]

Filename: 23_1550 + 1310_11.iolm

MTP/MPO12-LC Link Measurement

Main application

OLTS & OTDR/iOLM for Construction/Maintenance

Connector Inspection

OLTS

Connector Inspection

FasTesT OLTS

CH Ter						el M
•	27.1	43.0	729	274		
ACK,M Link Steel Link ORL:	2318 cm	1354 ees 2010 0 0 2010 0 0			Ebolud parss Call states	Anna anna Anna Anna Anna Anna
Postan (%)	7.04	Vavelerg	(h. (nat)	Less (19)	Aefectance (JR)	See As
19	pt.4 Splice	*	1314			Report
 Hole are the Trie less could 	t the fiber is prope due to a low-reflect	rh spiced. tercs (APC) cerrs	dan.			

iOLM

FTB-2: Multilayer testing

Physical, Optical, Transport, etc.

Connector Inspection

Optical Spectrum

100G Analyzers

Future modules...

OTDR

iOLM

Factors affecting uncertainty (instruments)

Light Source / Power Meter (OLTS)	OTDR
 Source drift after referencing Reference test jumpers conditions LSPM vs OLTS (coupler PDL) 	 Ideal LSPM vs OTDR (same for SM, slight difference for MM) OTDR loss linearity (vs loss uncertainty) Launch vs receive fiber geometry (different
 Respect calibration period and change your test jumpers 	 backscattering ratio) Noise on trace (vs pulse, vs averaging time) Trace recovery (vs reflectance, vs length of receive fiber) Echos

Trace analysis/ event detection robustness

The example below is given for a MM loss measurement using a 1-cord reference, at **850 nm** for a link of **300 m** with a total loss of **1.6 dB**

Uncertainty contributor	Value	Comment
Light source instability	+/- 0.05 dB	Typical instability of a light source
		as per IEC 61282-14
Light source wavelength	Spectral loss dependence for	Light source wavelength tolerance
	300 m at 850 nm +/- 30 nm	specified as per ISO/IEC-14763-3 (2014)
MM Launch condition	+/- 10 % X 1.6 dB (850 nm)	For Encircled Flux compliant source
Mating reproducibility	+/- 0.1 dB	As per IEC 61282-14
Reference connector	+/- 0.05 dB	As per IEC 61282-14
repeatability		

All contributors are added in a statistical way, with a weight that is dependent on the type of uncertainties, to calculate the total uncertainty. In the example above, the total uncertainty is:

How to apply it to Generic PON architecture

	OSI Model	TCP/IP	Protocol	Test Application	EXFO Tool
rs	Application Layer	Application	DNS, DHCP, FTP, HTTP, SIP	Speedtest (Ookla)	Ookla, Verifiers
aye	Presentation Layer	Application	MPEG, JPEG, TIFF		
st L	Session Layer	Layer	PAP, SQL,		
Р	Transport Layer	Transport Layer	TCP, UDP	RFC6349 (TCP/IP throughput, MTU, RTD)	
				RFC2544, SAM (Y.1564), OAM (802.1ag,	FTB-870-880-8880-
	Network Layer	Internet Layer	IP, ICMP, IGMP, IPv4, IPv6,	802.3ah, Y.1731), SyncE G.8262, PTP	88x00, BV-3100
ers			Ethernet, ATM, PPP, MPLS, CPRI,	1588v2, Rf over CPRI	
Lay	Data Link Layer		OBSAI		
dia					PPM-350, MAX-
Me		Link Layer	Media (Fiber, Copper) Technology	Copper or Fiber qualification (level,	600(G) <i>,</i> MAX-
			(DSL, WiFi, PON, WDM)	loss, reflectance,), Upstream,	94x, MAX-700,
			Modulation (DMT, OFDM, TDMA,	Downstream,	FTB-55/57/5800,
	Physical Layer		QAM, PAM)		FTB-5200, FG-750

Link Layer trend: Large-scale FTTH deployment

Key operational efficiency enabler

- Create and load intelligent digitized MOP templates onto TestFlow server.
- 2

3

- Distribute templates to test units from TestFlow server.
- Modify and run test sequences (template instances) on test units without the need of other applications or manuals.

- Automatically log test results and upload test-result files to centralized TestFlow server for results-to-metrics processing.
- 5
- Analyze key testing metrics from centralized TestFlow database and verify compliance with network design standards.

Integrate TestFlow server with back-office systems using open application programming interfaces (APIs).

CONFIDENTIAL

Link Layer trend Contractor process conformance

Reducing OPEX and improving performance

Link Layer trend SmartR—makes copper testing a whole lot easier

Available for MaxTester 600 Series

Pair detective

Optimized fault identification through automated analysis

Guidance on probable issues for faster and comprehensive interpretation

FaultMapper

Automated copper pair analysis with fault location

Intuitive schematic/graphical presentation of the copper loop

Internet/Transport Layer trend: Manual Testing Issues with proper testing

Asymmetrical traffic -Need for Dual-Test-Set (aka bi-directional test)

Internet/Transport Layer trend: Centralized Activation

Internet/Transport Layer trend:—"No Truck-Roll" Activation

Using OAM/TWAMP/Echo Encapsulation

No-truck-roll activation:

- Leverage standards-based activation to perform turn-up
- · Same test/methodologies—just the test packet
- Tested with various NID Vendors, such as RAD, ADVA, TelcoSystems, etc.
- · Significantly reduce costs when possible

Note: OAM responder can be software or hardware based. However software-based responder may have performance limitations at high throughput.

Application Layer EXFO's NFV/SDN Architecture

DCI Optical Testing/ Physical Layer Requirements

Same guidelines as for telco deployments apply. Some tests are only relevant in certain conditions.

Potential issues	What to test?	Test instrument	When to test?
Dirty and damaged connectors	Connector endface cleanliness	Inspection probe	Always
Broken fiber, dirty connectors, macrobends	OTDR	OTDR/iOLM	Always
Chromatic dispersion	Chromatic dispersion	CD tester	Only links of more than 70-80 km
Polarization mode dispersion	PMD	PMD tester	Only links of more than 10-20 km
Wavelength drift	Channel central wavelength	Optical Spectrum Analyzer	Always
Power drift	Channel power	Optical Spectrum Analyzer	Always
Defective (noisy) amplifiers/ROADMs	Optical Signal-to-Noise Ratio	Optical Spectrum Analyzer	Only when networks include amplifiers/ROADMs

vratislav.blazek@exfo.com