Arthur Moll BDM Transport and Datacom

May 2010

Introducing EtherSAM Ethernet Service Activation Methodology

Design

Deployment Service Assurance

Issues with current methodologies and new testing trends

- Description of Y.156SAM Methodology
- What is EtherSAM
- Advantages of EtherSAM

Issues with current methodologies and new testing trends

- Description of Y.156SAM Methodology
- What is EtherSAM
- Advantages of EtherSAM

Classic SLA Performance Assessment: RFC 2544 Test methodology

• RFC = "Request for Comment", created by the Internet Engineering Task Force

- (Title: "Benchmarking Methodology for Network Interconnect <u>Devices</u>")
- Evolved to provide performance metrics of Ethernet networks
- Four tests applicable to Ethernet networks
- Allows Control of Frame Sizes (Sweep), Duration and number of test iterations

Issues with RFC 2544 Test Methodology

- Tests are done sequentially
- Methodology is performance-based...
 - Does not transition well to a mid to long-term measurement
- Traffic generation based on single stream of test data
 - Not scalable to multiple class of services as defined in MEF 6.1 and 10.1
- Packet jitter is not defined in this test; this is a <u>key</u> component of new Ethernet services SLAs:
 - Mobile backhaul SyncE capable
 - Triple-Play (xDSL, FTTx) networks
 - Business services (mission critical operations)
- Convergence of tests are long and unpredictable (from 20min to ~4hr for full suite of tests)
- Pass/fail results are left to interpretation

Deployme

Frame Loss

Packet Jitter

Issues with today's Ethernet testing methodologies

- Only currently standardized methodology is RFC2544
- Current methodology (RFC2544) does not include all required measurements for today's services (SLA parameters):

Deployme

- Packet Jitter, Out-of-Sequence, QoS measurement, multiple concurrent service levels.
- Need to perform multiple tests to validate complete SLA.
 - One RFC per Service or CoS
 - Then one test with streams Multi-Stream
- Current methodology is time consuming (approx. 4 hours)
- Current methodology does not adapt to long term measurements

Y.156SAM addresses all these issues

Applications

3G has 4 Classes of service defined

Deploymen

 LTE (4G) has 7 classes of service defined

LTE traffic		Transport Service Class	PCP	DSCP	LTE Interface
Synchronization		Synchronization	7	111xxx	Sync
Bearer OAM		Bearer OAM	4	100xxx	OAM
QCI Level	1/2	Voice/Live Video	6	110xxx	S1、X2
	3	Video on Demand	3	011xxx	S1、X2
	4	Real Time Gaming	5	101xxx	S1 、X2
	5	Control/Management	7	111xxx	S1 、X2
	6/7/8/9	Others	0,1,2	000xxx~010xxx	S1 、X2

Commercial Services, Wholesale Services

			A.
Performance Attribute	Real Time	ORACLE High Priority Data	Best Effort Data (Internet Access)
CIR (Mbps) (Green Traffic)	5	10	2.5
EIR (Mbps) (Yellow Traffic)	0	5	5
Frame Delay (ms)	<5	5-15	<30
Frame Delay Variation (ms)	<1	n/a	n/a
Frame Loss (%)	<0.001	<0.05	<0.05
VLAN	100	200	300

Useful Definitions

CIR: Committed Information Rate: Average rate in bits/s of Service Frames up to which the network delivers Service Frames and meets the performance objectives defined by the CoS Service Attribute.

Deplo

EIR: Excess Information Rate: Average rate in bits/s of Service Frames up to which the network may deliver Service Frames but without any performance objectives.

Ethernet Service SLA Example

Deployment

Performance Attribute	Real Time	ORACLE® High Priority Data	Best Effort Data (Internet Access)
CIR (Mbps) (Green Traffic)	5	10	2.5
EIR (Mbps) (Yellow Traffic)	0	5	5
Frame Delay (ms)	<5	5-15	<30
Frame Delay Variation (ms)	<1	n/a	n/a
Frame Loss (%)	<0.001	<0.05	<0.05
VLAN	100	200	300

This is what needs to be validated when the service is turned-up

Ethernet Commercial Services

End-to-end Service with SLA:

Performence Attribute	Real Time	ORACLE High Priority Data	Best Billion Date (Internet Access)
CIR (Mbps) (Green Traffic)	5	10	2.5
EIR (Mbps) (Yellow Traffic)	0	5	5
Frame Delay (ms)	<5	5-15	<30
Frame Delay Variation (ms)	<1	n/a	n/a
Frame Loss (%)	<0.001	<0.05	<0.05
VLAN	100	200	300

ORACLE ORACLE

 Traffic shaping configured in network equipment according to SLA (Rate limitation, queuing)

Deploymen

 Decision made on frame configuration: VLAN, ToS/DiffServ, port

ORACLE

ORACLE

If you need to test this service with RFC2544

With RFC2544 Service Validation takes 16 hours and not all parameters are verified

Issues with current methodologies and new testing trends

- Description of Y.156SAM Methodology
- What is EtherSAM
- Advantages of EtherSAM

Y.156sam History

 Following a large number of complaints from customers that RFC2544 was a very long procedure and not adapted to the services they needed to turn-up and troubleshoot, EXFO approached ITU-T for developing a new methodology

- This methodology was first validated with different international Service Providers
- The validated methodology was then proposed to the ITU-T and accepted. It is now an official draft recommendation: <u>Y.156sam</u>
- Study Group 12 is working on it.

High-Level View of Y.156SAM Test Methodology

ITU-T Y.156SAM (EtherSAM)

Phase 1 – Network Configuration Test (Ramp Test)

Objective: Validate the network configuration of each defined services (rate limiting, traffic shaping, QoS)

Methodology: For each service, a ramp test is used to gradually reach and exceed the CIR . All KPIs are measured against a threshold

Deplo

Phase 2 – Service Test

Objective: Validate the quality of service of each defined service and prove SLA conformance

Methodology: All services are generated at once to their CIR and all KPIs are measured for all services

Ethernet Service SLA Example

ORACLE° **Best Effort Data Performance Attribute High Priority Data Real Time** (Internet Access) CIR (Mbps) (Green Traffic) 5 10 2.5 EIR (Mbps) (Yellow Traffic) 5 5 0 Frame Delay (ms) 5-15 <30 <5 Frame Delay Variation (ms) <1 n/a n/a < 0.05 Frame Loss (%) < 0.001 < 0.05 0.2 0.2 Restoration Time (sec) 0.2 VLAN 100 200 300

Phase 1 – Network Configuration Test

Deployment

- For each service sequentially, generate a traffic ramp, first up to CIR and then up to EIR (if applicable) and then over EIR
- Verify that CIR and EIR are properly configured
- Verify all SLA parameters at each ramp step (Pass/Fail thresholds for each parameters)
- Approximate Test time: 1 minute per service

Phase 2 – Service Test

Deployment

- Generate all Services simultaneously at CIR and measure all parameters simultaneously (Throughput, Latency, Frame Loss and Packet Jitter) – Similar to "Per Stream Statistics"
- Pass/Fail threshold for each parameter (in each direction)
- Suggested Test time: 2 hours (dependent on customers, could be as low as 2 minutes)
- Can be scaled to longer term test (ex. 24 hours).

Issues with current methodologies and new testing trends

Deploymer

Description of Y.156SAM Methodology

What is EtherSAM

Advantages of EtherSAM

What is EtherSAM?

EtherSAM: Ethernet Service Activation Methodology

- EXFOs application for ITU-T draft recommendation: Y.156sam
- New test methodology for Ethernet Services (outdates the RFC2544).
 - To be used for service turn-up and troubleshooting of Ethernet Commercial Services, Ethernet Mobile Backhaul Services, Ethernet Wholesale services

Deploy

- Key functionality:
 - Test methodology to validate the key performance indicator of Carrier Ethernet-based services
 - Validates the configuration of each defined service
 - Validates the quality of the services as defined in the Service Level Agreement

EXFO first to implement Y.156sam with EtherSAM

Bi-directional (Dual Test Set)

As per RFC2544, we can perform the EtherSAM in Dual Test Set and obtain Bi-Directional Results

- Customer quote: "With Dual Test Set, we find about 5% more configuration errors"
- Only Bi-directional results can uncover all configuration errors and test assymmetrical services
- Results available at both Testers

- What is EtherSAM
- Issues with current methodologies and new testing trends

Deploymer

Description of EtherSAM Methodology

Advantages of EtherSAM

EtherSAM USPs and messaging

Advantages	What's in it for the Customer
 Methodology completely adapted to today's Ethernet services: Addressing all key SLA parameters: Throughput, Frame Loss, Latency, Jitter, Out-of-Sequence for multiple services simultaneously 	 Validate complete SLA with a SINGLE TEST Optimized quality of service
 Test is much faster than RFC2544 Results for several test steps on one report 	 Turn-up is 8x faster than RFC2544 (based on connection with 4 classes of service) Significant OPEX reduction
 Bi-directional results for all services (based on Dual Test Set) Test can be transitioned to long term (ex. 24h) 	First time right
Standards-based	Feeling of confidence
	Credibility when facing end customer

EXFO revolutionizes Carrier Ethernet/Mobile Backhaul service turn-up and troubleshooting with first Y.156sam implementation.

• EXFO is the first to implement this new standard by the ITU

- New standard is the <u>only</u> one that is adapted to today's reality for Carrier Ethernet Services
- ITU standards are endorsed by worldwide major Service Providers and NEMs
- Implementation with Patent pending methodology with bidirectional results

Questions?

Design

Deployment

Service Assurance

Deployment