

OTN Networks and related testing

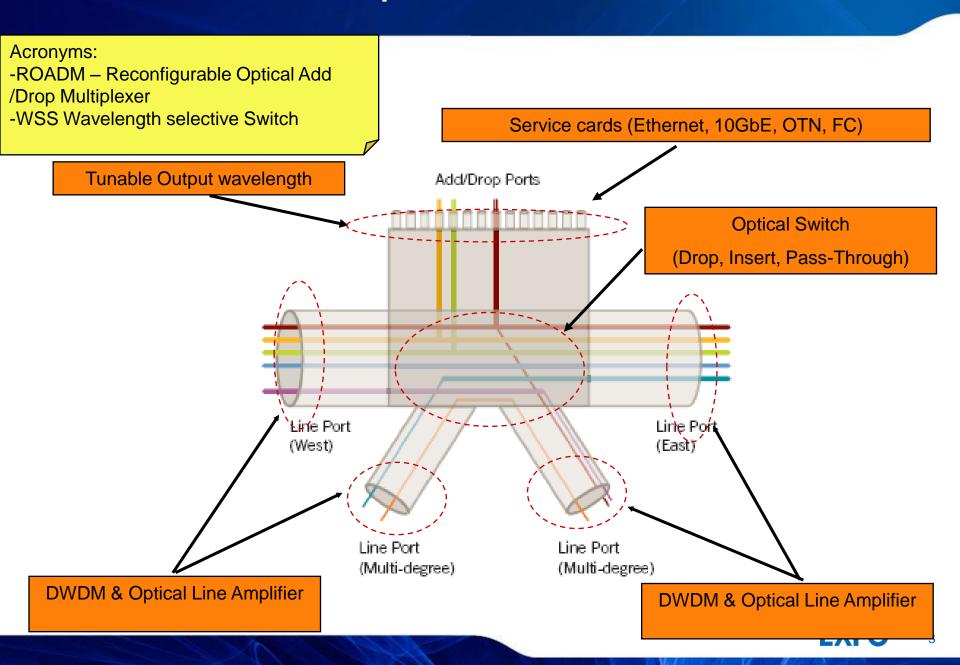
Arthur Moll BDM
Transport and Datacom

Why OTN

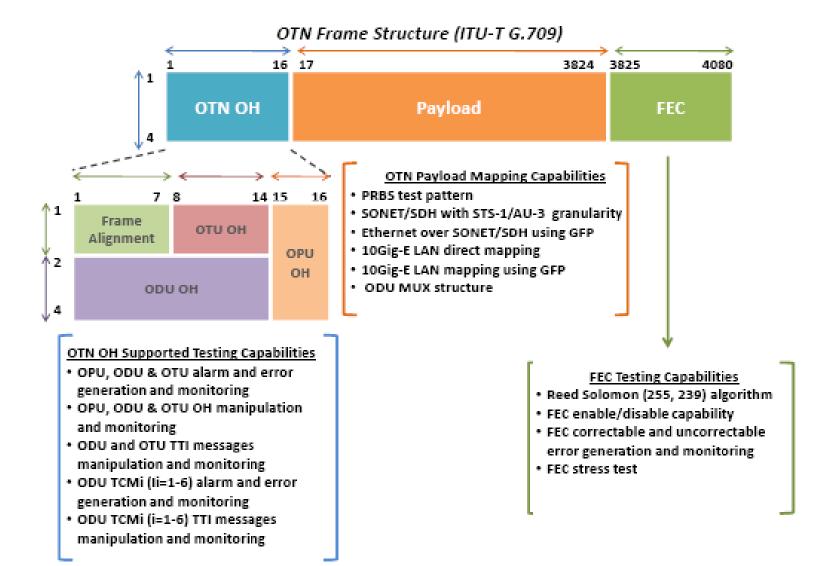
2

OTN OH Payload FEC

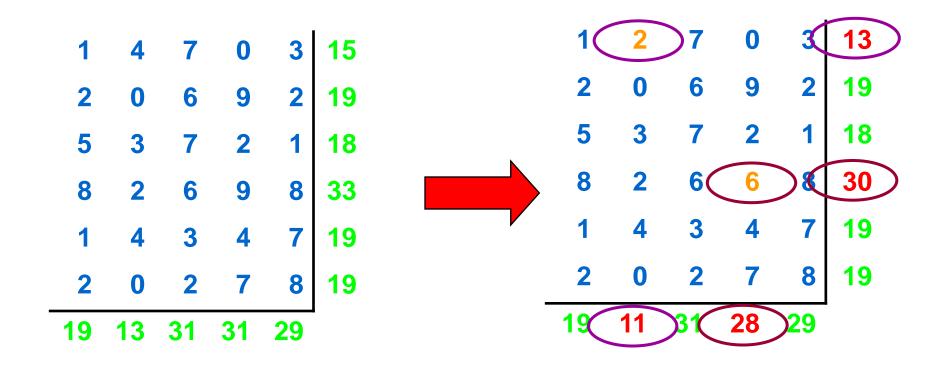
OTN OH supports OAM&P capabilities similar to SONET/SDH for simplified network commissioning, provisioning and troubleshooting purposes through its supported alarms, errors and TTI trace messages

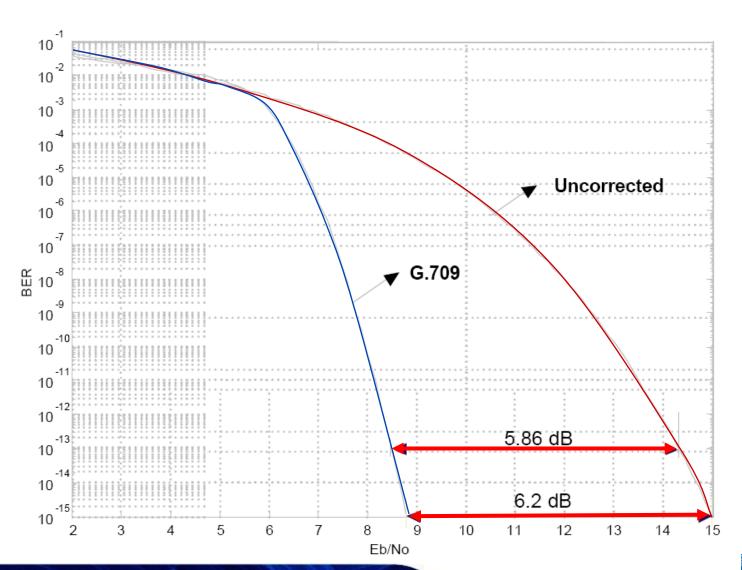

OTN payload is bit, timing and protocol transparent; meaning it can carry any client signal regardless of its line-rate (1.25G, 2.5G, 10G, 40G, 100G), clock (Synchronous, Asynchronous) and protocol (SONET/SDH, Ethernet, FC, etc.)

The FEC improves the BER when used for error correction; leading to a coding gain of 6.2 dB for systems with an operating BER of 10-15. This gain allows for running higher rates over existing facilities, longer span lengths, more DWDM channels and relaxed physical layer parameters


OTN is an integrated transport solution (versus point-to-point DWDM) specially when combined with ROADM capability for network scalability, Control Plane for traffic signaling and routing and ODU0/ODUFlex for traffic grooming and bandwidth management

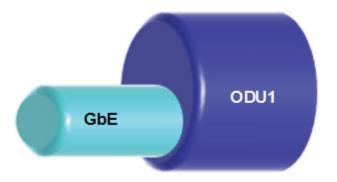
OTN is the transport technology of choice for transporting next-generation 40GE and 100GE services

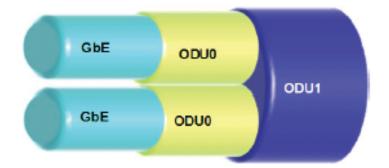

ROADM – WSS - Complex Network Elements


OTN Stack

Basic Idea of Forward Error Correction – FEC

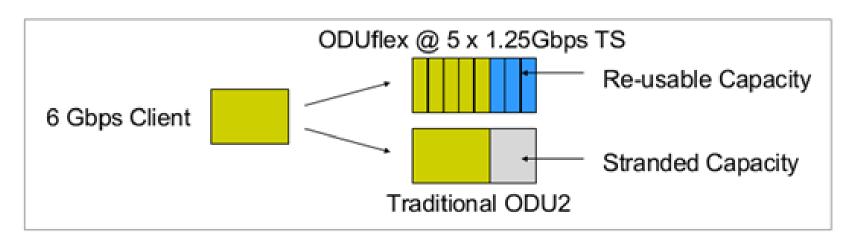
OTN: Forward Error Correction – FEC Reed-


OTN Rates

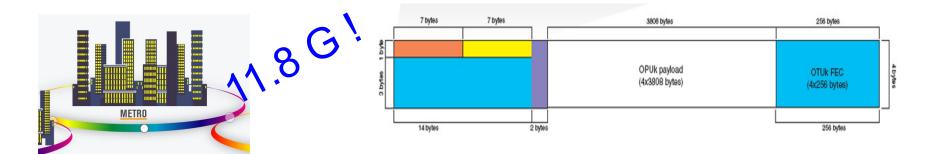

OTN Interface	Line Rate	Corresponding service	Supported Product	
ODU0	1.244 Gbps	Gig-E OC-3/STM-1	Future Development	
OTU1	2.666 Gbps	OC-48/STM-16	FTB/IQS-8120/NG/NGE FTB/IQS-8130/NG/NGE	
OTU2	10.709 Gbps	OC-192/STM-64 10Gig-E LAN (using GFP-F)	FTB/IQS-8130/NG/NGE	
OTU1e	11.0491 Gbps (without stuffing bits)	10Gig-E LAN (direct mapping over OTN)	FTB/IQS-8130/NG/NGE	
OTU2e	11.0957 Gbps (with stuffing bits)	10Gig-E LAN (direct mapping over OTN)	FTB/IQS-8130/NG/NGE	
OTU1f	11.27 Gbps (without stuffing bits)	10G Fibre Channel	FTB/IQS-8130/NG/NGE (March/2010)	
OTU2f	11.3 Gbps (with stuffing bits)	10G Fibre Channel	FTB/IQS-8130/NG/NGE (March/2010)	
отиз	43.018 Gbps	OC-768/STM-256 40GE	FTB/IQS-8140 (SONET/SDH) FTB/IQS-85100G (40GE)	
OTU3e1	44.57 Gbps	4X ODU2e (uses 2.5G TS; total of 16)	Future Development	
OTU3e2	44.58 Gbps	4 x ODU2e (uses 1.25G (ODU0) TS; total of 32)	Future Development	
OTU4	111.81 Gbps	100GE	FTB/IQS-85100G	

Functional Overview

Client Signal mapping

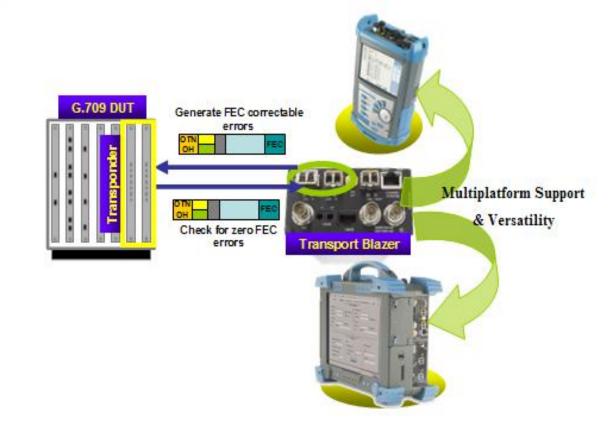

- ODU0 is a new container size that has been introduced to accommodate efficient transport of Gigabit Ethernet (1.25 Gb/s). OTU1 was not efficient for 1GbE signal with a payload rate of 2.48832
- ODU0 is half the size of an ODU1 container i.e = 1.244 160 Gb/s
- Gigabit Ethernet does not directly fit in the ODU0 container, transcoding (provided by GFP-T) is needed to bring the Gigabit Ethernet rate inside OPU0 rate (8B/10B coding9)
- ODU0 does not have a physical instance/interface (i.e. there is no OTU0), the signal needs to be multiplexed into a higher layer in order to be transported on the OTN network

ODU FLEX


- ODU FLEX is the new OTN
- Allows for flexible ODU rates for transparent transport of any client signal
- Adapted in 2 ways:
 - For Constant Bit Rate (CBR)client signals
 - > Rate = 239/238 x CBR rate
 - For GFP-F mapped packet client signals
 - \triangleright Rate = N x ~1.25Gbit/s (ODU0) with 1 \le N \le 80

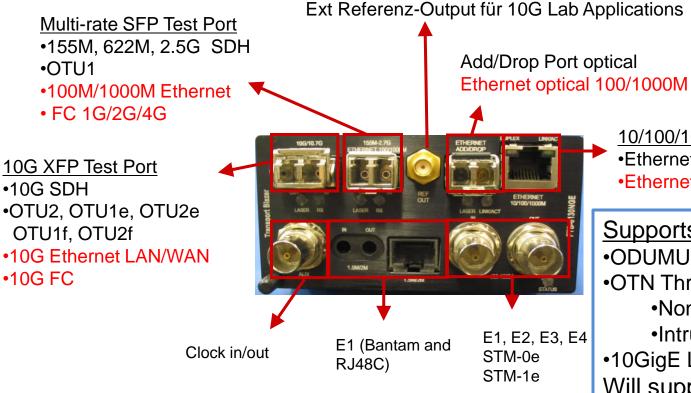
EXFO OTN Support

OTN Capabilities	8120	8120NG	8120NGE	8130	8130NG	8130NGE	8140
OPU, ODU (including TCM) OTU alarms, errors and TTIs generation and monitoring	4	٧	٧	4	٧	4	4
OPU, ODU, OTU OH manipulation and monitoring	4	1	4	4	1	4	4
PRBS pattern in OTN payload	4	4	1	4	1	4	4
SONET/SDH mapping into OTN payload	4	4	4	4	4	4	4
Ethernet over SONET/SDH mapping into OTN payload		4	4		4	1	
10Gig-E LAN direct mapping into OTN payload					4	4	In ODU MUX
10Gig-E LAN mapping into OTN payload using GFP					4	4	In ODU MUX
ODU Mux structure mapping into OTN payload				4	4	4	4
FEC testing	1	4	1	4	1	1	1


OTN Testing

- At Installation / Commissioning the following measurements are recommended:
 - Support of OTU1, OTU2, OTU1e, OTU2e, OTU1f, OTU2f Bitrates
 - Proper Mapping of SDH Signals (synch. and asynch.)
 - FEC Test (Insertion of correctable and uncorrectable Erors)
 - Error and Alarm Insertion, and Analysis in OTU, ODU (incl. ODU TCM)
 - Path Trace Identification in OTU, ODU
 - Test of Mux/Demux Functionality (ODU1/ODU2)
 - ODU Multiplex Test: Alarm Generation and Analysis
 - **APS/SDT**
 - RTD

Appropriate FEC Behavior Test


- Using the Transport Blazer generate FEC correctable errors distributed over the FEC portion of the OTN frame
- Verify the error correction capability of the G.709 NE using its FEC.

- Using FEC STRESS option, an advanced FEC test can be performed by distributing correctable errors randomly over the entire OTU frame.
- > If the DUT is unable to correct errors, the payload will be affected.

EXFO's FTB-8130NGE

Power Blazer 10Gbps Multi-Service Test Module

10/100/1000M

- Ethernet Add/Drop Port
- Ethernet electrical

Supports today:

- •ODUMUX: ODU1 in ODU2
- OTN ThruMode
 - Non-Intrusive
 - Intrusive
- •10GigE LAN inODU2 with GFP-F
- Will support:
- •ODU0
- ODUflex
- ODU0 direct in ODU2

Most compact Multi-Service solution in the Market!

High Speed OTN Testing Solutions

43G serial optics – OTU3

- OTN testing at OTU-3
- Including Forward Error Correction (FEC) as per ITU-T G.709
- OTN ThruMode at 43G
- Compatible with: NRZ, Duo-Binary, DPSK, and DQPSK

Will support

- Multi-Stage OTN mappingODU0-ODU1-ODU2-ODU3
- Direct 32xODU0 in ODU3

112G parallel optics – OTU4

- OTN testing at OTU4
- Including Forward Error Correction (FEC) as per ITU-T G.709
- Based on CFPs (MSA)

Will support

- Multi-Stage OTN mapping
 - ODU0-ODU1-ODU2-ODU3-ODU4
- Direct 80xODU0 in ODU4

Questions?

