


# ODN2000/LE2000

Optical Distribution Node/Line Extender with Two Amplified RF Ports

# User Manual



#### Offices:

| Australia, Melbourne:        | Tel. +61-3-8561-1400  |  |
|------------------------------|-----------------------|--|
| China, Beijing:              | Tel. +86-10-5791-0655 |  |
| Americas:                    | Tel. +1-888-339-8805  |  |
| EMEA, Netherlands:           | Tel. +31-36-536-8011  |  |
| Email: support@pbnglobal.com |                       |  |
| Website: www.pbnglobal.com   |                       |  |

©2016 Pacific Broadband Networks. All rights reserved

# ODN2000/LE2000

# Optical Distribution Node/Line Extender with Two Amplified RF Ports

# **User Manual**

| Release Date       | February 1, 2016                             |  |
|--------------------|----------------------------------------------|--|
| Document version   | V0a                                          |  |
| Document reference | PBN.ODN2000-Manual V0a-Released-1 Feb 16.pdf |  |
| Document status    | Released                                     |  |
| Prepared by        | Pacific Broadband Networks                   |  |
| Prepared for       | ODN2000/LE2000 Product Users                 |  |

## Contents

| 1 Preface                                   | 4  |
|---------------------------------------------|----|
| 1.1 Main Contents                           | 4  |
| 1.2 Technical Support                       | 4  |
| 2 Precautions                               | 5  |
| 3 Introduction                              | 6  |
| 3.1 Overview                                | 6  |
| 3.2 Features                                | 6  |
| 3.3 Specifications                          | 7  |
| 3.4 Model Order Details                     | 9  |
| 4 Technical & Module Description            | 12 |
| 4.1 Technical Description                   | 12 |
| 4.2 Internal Layout                         | 14 |
| 4.3 Power Module Panel                      | 17 |
| 4.4 ODN-FR Top Panel                        | 18 |
| 4.5 ODN-RT Top Panel                        | 19 |
| 4.6 Attenuator/Equalizer Pad                | 20 |
| 4.7 External RF Connectors & Mounting Holes | 22 |
| 5 Installation                              | 24 |
| 5.1 Equipment Inventory                     |    |
| 5.2 Packaging and Transportation            | 24 |
| 5.3 Installation                            | 24 |
| 5.3.1 Node Installation Pointers            | 24 |
| 5.3.2 Mounting                              | 24 |
| 5.3.3 Cable Routing                         | 26 |
| 5.3.4 Optical Stub Cable                    | 27 |
| 5.3.5 Closing the Node                      | 30 |
| 5.4 Module Installation & Removal           | 32 |
| 5.4.1 Module Removal                        | 32 |
| 5.4.2 Module Installation                   | 33 |
| 6 Product Warranty                          | 35 |

## 1 Preface

## **1.1 Main Contents**

This User Manual consists of the following sections:

| 1 Preface      | 4 Technical & Module Description |
|----------------|----------------------------------|
| 2 Precautions  | 5 Installation                   |
| 3 Introduction | 6 Product Warranty               |

## **1.2 Technical Support**

Please contact Pacific Broadband Networks qualified service personnel for all your enquiries about this product.

## Pacific Broadband Networks (PBN) Offices

## Australia

Address: Suite 15, Building 3, 195 Wellington Road, Clayton, VIC 3168, Australia

Phone: +61-3-8561-1400

Fax: +61-3-9562-2957

### Europe

Address: Argonweg 15,1362AA Almere, Netherlands

Phone: +31-36-536-8011

Fax: +31-36-536-4367

### China

Address: Unit 403, Entrance C, Building No. 201 A-10, Jiuxianqiao Beilu, Chaoyang District, Beijing, China

Phone: +86-10-5791-0655

Fax: +86-10-5791-0855

### Americas

Phone: +1-888-339-8805

#### Website: www.pbnglobal.com

Email: <u>support@pbnglobal.com</u>

## **2 Precautions**



General Warning

#### WARNING!

This product has an IP67 rating. It is suitable for outdoor applications. To prevent fire, electrical shock, or permanent damage to the product do not expose this unit to conditions outside its rating.

- The product user manual should be read and understood before any units are put into use.
- Ensure the unit has adequate cooling and ventilation. The unit must be mounted with the heat-dissipating fins vertically-oriented.
- SC/APC 8° angle polished connectors must be used.
- Always replace protective caps on optical connectors when not in use.
- Dangerous voltages are present within the unit at all times.
- Do not operate unit without all covers and panels properly installed.

#### Cleaning

Use only a damp cloth for cleaning front panel. Use a soft dry cloth to clean the top of unit. Do not use any liquid cleaners of any kind.

#### **Overloading or outage**

Unplug the unit and refer all repairs to Pacific Broadband Networks' qualified service personnel.

Only use approved electrical cords. Overloading wall outlets and extension cords may result in a fire or electrical shock.

### Servicing

Do not attempt to service this unit yourself.

Refer servicing to Pacific Broadband Networks' qualified service personnel only.



Laser Radiation

### WARNING!

Exposure to class 1M laser radiation is possible. Access should be restricted to trained personnel only. Do not look directly at exposed fiber or connector ends when handling optical equipment.

## **3 Introduction**

## 3.1 Overview

The small and adaptable ODN2000 Optical Distribution Node with two amplified RF ports has been designed to affordably deliver interactive CATV and high capacity DOCSIS services. The ODN2000 is a high performance network device engineered to provide the highest quality transmission of HD video, data, and VoIP services.

The ODN2000 is currently equipped with a Gallium arsenide (GaAs) module that offers a cost-effective and flexible solution to expand networks. The optical node offers two high power RF outputs, each with over 1 GHz of bandwidth.

The ODN2000 deep-fiber node is perfect for the last mile in broadband networks. The small and rugged design makes this unit ideal for fiber-to-the-apartment and fiber-to-the-curb applications. Having versatile modular components allows the ODN2000 to be utilized in many different phases of network deployment. As the network grows, the ODN2000/LE2000 can be upgraded. Unmatched flexibility, combined with a robust housing, makes this a reliable product for designing long-term HFC solutions. Additionally, Node+0 support allows for a reduction in amplifiers, improved reliability, and lower maintenance costs, as well as additional options for future cost-effective upgrades.

The optional DOCSIS transponder remotely monitors and manages the ODN2000 to simplify system maintenance and reduce maintenance costs.

The LE2000 is the basic amplifier model and can be upgraded to a 2-port fiber node (into the ODN2000) by adding the optional reverse transmitter module and forward receiver module.

## 3.2 Features

- Advanced Gallium Arsenide (GaAs) RF hybrid technology provides excellent performance with two individually amplified high-level outputs with more than 55 dBmV each at 1000 MHz
- High output power supports Node+0 architecture
- Can be seamlessly upgraded from an RF amplifier (LE2000) to an optical node (ODN2000)
- Return-path lasers are available for 1310 nm or for CWDM applications on one return fiber at 1470/1490/1510/1530/1550/ 1570/1590/1610 nm
- Optical transmitter/receiver modules and RF amplifier can be individually installed, removed, or replaced. The modular design reduces downtime and simplifies maintenance
- Standard attenuator/equalizer pad to control both attenuation and equalization

- Dedicated KS 5/8" AC input for remote power. 35-90 Vac power supply
- Optional DOCSIS transponder for ODN2000 remote monitoring and management
- Remotely (provisioned) or locally manageable and upgradeable

## 3.3 Specifications

### Forward Path Optical Performance

| Optical wavelength   | 1200-1610 nm |
|----------------------|--------------|
| Input range          | −5-3 dBm     |
| Nominal design input | −1 dBm       |
| OAGC (optical input) | −4-2dBm      |
| Optical return loss  | >50 dB       |
|                      |              |

### Forward Path RF Performance

| Bandwidth           | 54 / 70 / 85-1000 MHz                         |
|---------------------|-----------------------------------------------|
| RF flatness         | ±0.75 dB                                      |
| Output level        | > 50 dBmV @ 1000 MHz (ODN2xxx-A) <sup>1</sup> |
|                     | > 55 dBmV @ 1000 MHz (ODN2xxx-B) <sup>2</sup> |
| Return loss         | >16 dB                                        |
| Impedance           | 75 Ω                                          |
| RF output stability | ±1 dB                                         |

## Forward Path Optical Link Performance<sup>3</sup>

| CNR (5 MHz NBW) | >53 dB |
|-----------------|--------|
| CSO             | >65 dB |
| СТВ             | >68 dB |
| MER             | >37 dB |
| BER             | <1E-9  |

## **Return Path RF Performance**

 $<sup>^1</sup>$  14 ± 1 dB slope from 85 to 1000 MHz. Optical input –4-+2 dBm, 4% OMI.

 $<sup>^2</sup>$  14 ± 1 dB slope from 85 to 1000 MHz. Optical input -4-+2 dBm, 4% OMI.

<sup>&</sup>lt;sup>3</sup> CNR, CSO, CTB, and MER are loaded with 30 NTSC+124 QAM256 or 30 PAL D/ K+85 QAM256; measured with PBN referenced optical receiver with 10 km single-mode optical fiber 0 dBm.

BER is loaded with 30 NTSC+124 QAM256, 30 PAL D/K+85 QAM256, or 153 QAM256; measured with PBN referenced optical receiver with 10 km single-mode optical fiber 0 dBm.

| Bandwidth       | 5-42 / 55 / 65 MHz |
|-----------------|--------------------|
| RF flatness     | ±0.75 dB           |
| Input level     | 15-20 dBmV         |
| Gain adjustment | 1 dB step          |
| Impedance       | 75 Ω               |

## Return Path Optical Link Performance<sup>1</sup>

| NPR≥ 30 dynamic          | >25 dB             |
|--------------------------|--------------------|
| range                    |                    |
| Optical output stability | ±0.5 dBm           |
| CNR                      | >48 dB             |
| IMD2                     | <−52 dBm           |
| OMI                      | 6% @ 20 dBmV input |

## Connectors

| Optical connectors | SC/APC <sup>2</sup> , FC/APC, E2000/APC   |
|--------------------|-------------------------------------------|
| RF connectors      | Cable Entry: 5/8" - 24 thread             |
|                    | Internal Connectors: 75 $\Omega$ Mini SMB |

RF Test points: G-type - male

### Generals

| Power supply          | 35-90 Vac; 90-264 Vac mains                             |
|-----------------------|---------------------------------------------------------|
| Power consumption     | 1Rx, 44 W; 1Rx+1Tx, 46 W                                |
| Operating temperature | −40 to 65°C (-40 to 149°F)                              |
| Storage temperature   | −40 to 80°C (-40 to 176°F)                              |
| Dimensions (W×D×H)    | 235×143×307 mm (9.25 x 5.62 x 12.08 in)                 |
| Ship size (W×D×H)     | 310×260×400 mm (12.20 x 10.24 x 15.75 in.)              |
| Weight                | ODN2000, 5.7 kg (12.57 lb.); LE2000, 5.1 kg (11.24 lb.) |
| Ship weight           | ODN2000, 6.3 kg (13.89 lb.); LE2000, 5.7 kg (12.57 lb.) |
| Enclosure IP rating   | IP67                                                    |

<sup>&</sup>lt;sup>1</sup> Use PBN RRAS-Q @ 0km fiber, -7 dBm input, 6% OMI.

<sup>&</sup>lt;sup>2</sup> Standard option. Contact a PBN Sales Representative for the availability of other options.

## 3.4 Model Order Details

| ODN2[P][Q][R]-[S]-[             | T][U][V][W]-[X]-[Y <sub>1</sub> /          | 0]-[Z]                                                       | Optical Distribution Node with two amplified RF ports |  |
|---------------------------------|--------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|--|
| LE2[P][Q][R]-[S]-[T]            | [U][V]                                     |                                                              | Line Extender with two amplified RF ports             |  |
| Accessories                     |                                            |                                                              |                                                       |  |
| LE2[P][Q][R]-[S]-[T]            |                                            |                                                              | RF Amplifier                                          |  |
| ODN20-FR-[W]-[Z]                |                                            |                                                              | Forward Path Optical Receiver                         |  |
| ODN20-RT-[W]-[Y <sub>1</sub> ]· | -[Z]                                       |                                                              | Return Path Optical Transmitters (5-200 MHz)          |  |
| Options                         |                                            |                                                              |                                                       |  |
| Ρ                               | Type: 0 (RF PAD plug-in)                   |                                                              | n)                                                    |  |
| Q                               | Backplane Board Version: 0 (Basic Version) |                                                              | on: 0 (Basic Version)                                 |  |
| R                               | Output Port Nur                            | Output Port Number: 1 (One port output); 2 (Two port output) |                                                       |  |
| S                               | HW Performance <sup>1</sup> :              |                                                              |                                                       |  |
|                                 | А                                          | > 50 dBmV @ 1000 MHz                                         |                                                       |  |
|                                 | В                                          | > 55 dBmV @ 1000 MHz                                         |                                                       |  |
| т                               | Diplexers                                  |                                                              |                                                       |  |
|                                 | 0                                          | No dip                                                       | blexers                                               |  |
|                                 | 1                                          | 42/54                                                        | MHz                                                   |  |
|                                 | 2                                          | 55/70                                                        | MHz                                                   |  |
|                                 | 3                                          | 65/85                                                        | MHz                                                   |  |
| U                               | DOCSIS Transponder: 0 (Optional accessory) |                                                              |                                                       |  |
| V                               | Power Supply                               |                                                              |                                                       |  |
|                                 | 1                                          | 35-90                                                        | Vac                                                   |  |
|                                 | 2                                          | 50-11                                                        | 0 Vac                                                 |  |
|                                 | 3                                          | 90-26                                                        | 4 Vac with power plug for CN                          |  |
|                                 | 4                                          | 90-26                                                        | 4 Vac with power plug for AU                          |  |
|                                 | 5                                          | 90-26                                                        | 4 Vac with power plug for EU                          |  |
|                                 |                                            |                                                              |                                                       |  |

<sup>1</sup> 30 NTSC+124 QAM256 or 30 PAL D/K+85 QAM256; measured with PBN optical receiver with 10 km single-mode optical fiber, 0 dBm; CSO>60 dB; CTB>60 dB.

|                  | 6                           | 90-264 Vac with power plug for UK   |
|------------------|-----------------------------|-------------------------------------|
|                  | 7                           | 90-264 Vac with power plug for US   |
| W                | Optical Connect             | or                                  |
|                  | S (SC/APC) <sup>1</sup> ; F | (FC/APC); E (E2000/APC)             |
| Х                | Forward Path Receiver       |                                     |
|                  | 0                           | No receiver                         |
|                  | 1                           | One receiver                        |
| Y <sub>1</sub> 0 | Return Laser Transmitter    |                                     |
|                  | 0                           | No return transmitter               |
|                  | A                           | 1310 nm DFB laser, 0 dBm (1 mW)     |
|                  | В                           | 1310 nm DFB laser, 3 dBm (2 mW)     |
|                  | С                           | 1310 nm DFB laser, −4 dBm (0.4mW)   |
|                  | Ν                           | 1470 nm CWDM DFB laser, 3 dBm (2mW) |
|                  | Р                           | 1490 nm CWDM DFB laser, 3 dBm (2mW) |
|                  | Q                           | 1510 nm CWDM DFB laser, 3 dBm (2mW) |
|                  | R                           | 1530 nm CWDM DFB laser, 3 dBm (2mW) |
|                  | S                           | 1550 nm CWDM DFB laser, 3 dBm (2mW) |
|                  | т                           | 1570 nm CWDM DFB laser, 3 dBm (2mW) |
|                  | U                           | 1590 nm CWDM DFB laser, 3 dBm (2mW) |
|                  | V                           | 1610 nm CWDM DFB laser, 3 dBm (2mW) |
| Z                | Model Number:               | 1                                   |

Table 3-1 Return laser transmitter order examples

| Code (Y <sub>1</sub> 0) | Description                                      |
|-------------------------|--------------------------------------------------|
| 00                      | No return transmitter                            |
| CO                      | One return transmitter; CWDM DFB 1310 nm, 0.4 mW |
| Q0                      | One return transmitter, CWDM DFB 1510 nm, 2 mW   |

<sup>&</sup>lt;sup>1</sup> Standard option. Contact a PBN Sales Representative for the availability of other options.

### **Other Accessories**

| High Pass Filters       |                                               |
|-------------------------|-----------------------------------------------|
| ODN20-HPF-54            | 54-1000 MHz                                   |
| ODN20-HPF-70            | 70-1000 MHz                                   |
| ODN20-HPF-85            | 85-1000 MHz                                   |
| Low Pass Filters        |                                               |
| ODN20-LPF-42            | 5-42 MHz                                      |
| ODN20-LPF-55            | 5-55 MHz                                      |
| ODN20-LPF-65            | 5-65 MHz                                      |
| RF Diplexers            |                                               |
| ODN20-DPL-4254          | 42 / 54 MHz                                   |
| ODN20-DPL-5570          | 55 / 70 MHz                                   |
| ODN20-DPL-6585          | 65 / 85 MHz                                   |
| Power Supply            |                                               |
| ODN20-PS-90             | 35-90 Vac                                     |
| ODN20-PS-264-CN         | 90-264 Vac with power supply for CN           |
| ODN20-PS-264-AU         | 90-264 Vac input power supply for AU          |
| ODN20-PS-264-EU         | 90-264 Vac input power supply for EU          |
| ODN20-PS-264-UK         | 90-264 Vac input power supply for UK          |
| ODN20-PS-264-US         | 90-264 Vac input power supply for US          |
| Attenuator/equalizer pa | ad (0-1000 MHz):                              |
| ODN20-ATT-xx            | xx = 0 dB to 30 dB in 1 dB steps <sup>1</sup> |

<sup>&</sup>lt;sup>1</sup> If the pad is used as an equalizer, "xx" indicates an equalization value. If the pad is used as an attenuator, "xx" indicates an attenuation value.

## 4 Technical & Module Description

## **4.1 Technical Description**

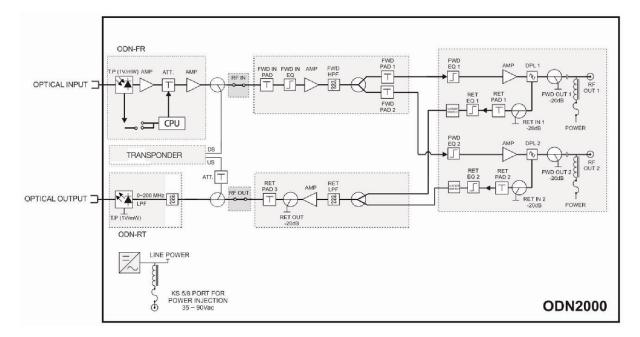



Figure 4-1 ODN2000 Block Diagram

| Table 4-1 ODN2000 node circ | cuit components |
|-----------------------------|-----------------|
|-----------------------------|-----------------|

| #  | Part name     | Description                       |
|----|---------------|-----------------------------------|
| 1  | OPTICAL INPUT | Optical input signal              |
| 2  | ODN-FR        | Forward path receiver             |
| 3  | T.P. (1V/mW)  | Optical power test point (1 V/mW) |
| 4  | AMP           | Amplifier                         |
| 5  | ATT           | Attenuator                        |
| 6  | CPU           | Central processing unit           |
| 7  | RF IN         | RF input                          |
| 8  | FWD IN PAD    | Forward path attenuator           |
| 9  | FWD IN EQ     | Forward path equalizer            |
| 10 | FWD HPF       | Forward path high pass filter     |
| 11 | FWD PAD 1     | Port 1 forward path attenuator    |
| 12 | FWD PAD 2     | Port 2 forward path attenuator    |
| 13 | FWD EQ 1      | Port 1 forward path equalizer     |
| 14 | FWD EQ 2      | Port 2 forward path equalizer     |

| #  | Part name                                    | Description                                                   |
|----|----------------------------------------------|---------------------------------------------------------------|
| 15 | DPL 1                                        | Port 1 diplexer                                               |
| 16 | DPL 2                                        | Port 2 diplexer                                               |
| 17 | FWD OUT 1                                    | Port 1 forward path RF output test point (-20dB)              |
| 18 | FWD OUT 2                                    | Port 2 forward path RF output test point (-20dB)              |
| 19 | POWER                                        | Power feed switch for subordinate equipment                   |
| 20 | RF OUT 1                                     | Port 1 RF output signal                                       |
| 21 | RF OUT 2                                     | Port 2 RF output signal                                       |
| 22 | RET IN 1                                     | Port 1 return path RF input test point (-20dB)                |
| 23 | RET IN 2                                     | Port 2 return path RF input test point (-20dB)                |
| 24 | RET PAD 1                                    | Port 1 return path attenuator                                 |
| 25 | RET PAD 2                                    | Port 2 return path attenuator                                 |
| 26 | RET EQ 1                                     | Port 1 return path equalizer                                  |
| 27 | RET EQ 2                                     | Port 2 return path equalizer                                  |
| 28 | INGRESS CONTROL SWITCH                       | 3-state switch (0 dB, 6 dB, 31.5 dB)                          |
| 29 | RET LPF                                      | Return path low pass filter                                   |
| 30 | RET OUT                                      | Forward path RF output test point (-20dB)                     |
| 31 | RET PAD 3                                    | Port 3 return path attenuator                                 |
| 32 | RF OUT                                       | RF output                                                     |
| 33 | ODN-RT                                       | Return path optical transmitter<br>(return laser transmitter) |
| 34 | LPF                                          | Low pass filter                                               |
| 35 | ATT.                                         | Voltage controlled attenuator                                 |
| 36 | TRANSPONDER                                  | Network management transponder                                |
| 37 | DS                                           | Downstream                                                    |
| 38 | US                                           | Upstream                                                      |
| 39 | OPTICAL OUTPUT                               | Optical output signal                                         |
| 40 | LINE POWER                                   | (Node) power supply                                           |
| 41 | KS 5/8 PORT FOR POWER INJECTION 35-90<br>Vac | KS 5"/8" port for 35-90 Vac power supply                      |

## 4.2 Internal Layout

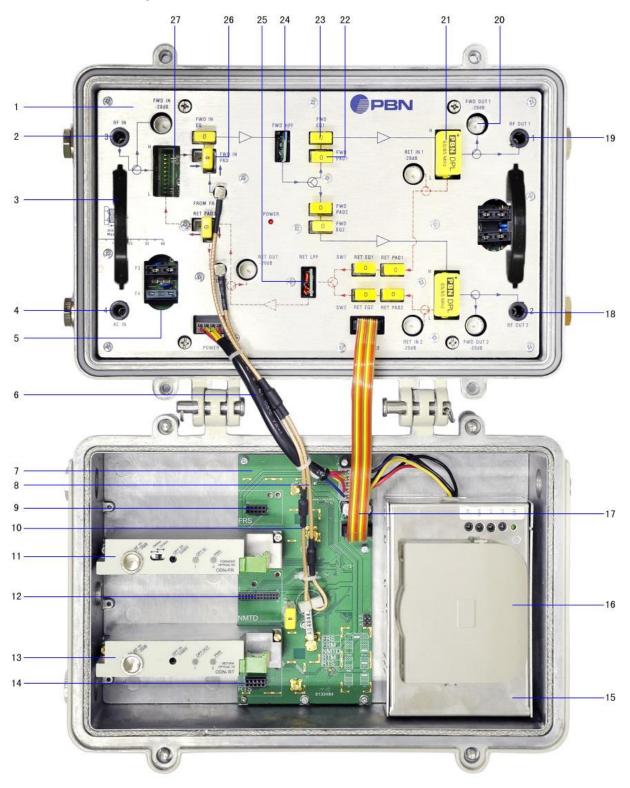



Figure 4-2 ODN2000 Internal Layout

### Table 4-2 ODN2000 components and their functions

| #  | Part name                                                         | Description                                                                                                                                |  |
|----|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1  | RF amplifier                                                      |                                                                                                                                            |  |
| 2  | RF input port                                                     | Used with an LE2000 amplifier                                                                                                              |  |
| 3  | Handle                                                            |                                                                                                                                            |  |
| 4  | 60 Vac power input                                                | 60 Vac power supply                                                                                                                        |  |
| 5  | Breakers                                                          | Plug-in, blade-type fuses to allow internal (F3, F4)<br>or external (F1, F2) power.                                                        |  |
| 6  | Power cord                                                        |                                                                                                                                            |  |
| 7  | Backplane                                                         |                                                                                                                                            |  |
| 8  | Forward path transmission line                                    |                                                                                                                                            |  |
| 9  | Forward path receiver input - slave (FRS) Temporarily unavailable |                                                                                                                                            |  |
| 10 | 0 Return path transmission line                                   |                                                                                                                                            |  |
| 11 | Forward path receiver input - master (FRM)                        |                                                                                                                                            |  |
| 12 | NMTD                                                              | DOCSIS network management transponder port                                                                                                 |  |
| 13 | Return path receiver input - master (RTM)                         |                                                                                                                                            |  |
| 14 | Return path receiver input - slave (RTS)                          | Temporarily unavailable                                                                                                                    |  |
| 15 | Power module                                                      |                                                                                                                                            |  |
| 16 | Optical fiber module                                              |                                                                                                                                            |  |
| 17 | Data cable                                                        |                                                                                                                                            |  |
| 18 | Port 2 RF output                                                  |                                                                                                                                            |  |
| 19 | Port 1 RF output                                                  |                                                                                                                                            |  |
| 20 | RF test point                                                     |                                                                                                                                            |  |
| 21 | Diplexer                                                          |                                                                                                                                            |  |
| 22 | Attenuator                                                        |                                                                                                                                            |  |
| 23 | B Equalizer                                                       |                                                                                                                                            |  |
| 24 | High pass filter                                                  |                                                                                                                                            |  |
| 25 | Low pass filter                                                   |                                                                                                                                            |  |
| 26 | L-shaped port for attenuator pad                                  | For LE2000, plug in the attenuator pad<br>horizontally.<br>For ODN2000, plug in the attenuator pad vertically<br>(as shown in Figure 4-2). |  |
| 27 | Diplexer                                                          | Used in an LE2000 amplifier                                                                                                                |  |

#### Note:

The item names given in Section 4.1 (RF IN, FWD IN EQ, RET PAD1, etc.) apply to ODN2000 RF amplifier components and are not repeated here. See Section 4.1 Technical Description for more details.

Due page space limitations, only one component is marked when there are several components of the same type.

## 4.3 Power Module Panel



Figure 4-3 Power Module

| # | LED Indicator                       | Description                                                      |
|---|-------------------------------------|------------------------------------------------------------------|
| 1 | AC Input Voltage Test Point (AC60V) | Test 60 V and 220 V AC input voltage                             |
| 2 | DC Output Voltage Test Point (24V)  | Test 24 V DC output voltage                                      |
| 3 | DC Output Voltage Test Point (8V)   | Test 8 V DC output voltage                                       |
| 4 | Ground Point (GND)                  | A ground reference point to measure input and<br>output voltages |
| 5 | Power LED (LED)                     | OFF - no power;<br>GREEN - module powered.                       |

## 4.4 ODN-FR Top Panel

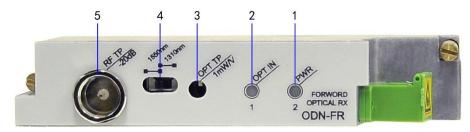



Figure 4-4 ODN-FR Top Panel

| ltem     | Part name                                                                       | Function                                                                      |
|----------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| 1        | Power LED                                                                       | OFF - no power;                                                               |
| 1        | Power LED                                                                       | GREEN - module powered.                                                       |
|          |                                                                                 | OFF - no alarm state;                                                         |
|          | 2 OPT IN LED                                                                    | GREEN - receiver optical power level is within range of -2 to 2 dBm;          |
| 2        |                                                                                 | AMBER - receiver optical power is slightly outside of range: too low or high  |
|          | (−2 to −5 dBm or 2 to 3 dBm);                                                   |                                                                               |
|          | RED - receiver optical power is too low or high ( $\leq$ -5dBm or $\geq$ 3dBm). |                                                                               |
| 3        | Optical Power Test Point                                                        | 1 V/mW                                                                        |
| (OPT TP) | (OPT TP)                                                                        |                                                                               |
| 4        | Wavelength Switch                                                               | Switches between 1550 nm and 1310 nm.                                         |
| 5        | RF Test Point                                                                   | -20 dB test point for checking the FR output level. It is rated as -20dB from |
| 5        | KF Test Follit                                                                  | the actual output level.                                                      |

## 4.5 ODN-RT Top Panel

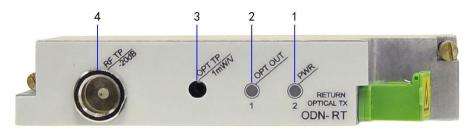



Figure 4-5 ODN-RT Top Panel

| Table 4-5 ODN-RT top panel | components and their functions |
|----------------------------|--------------------------------|
|----------------------------|--------------------------------|

| ltem | Part name                            | Function                                                                                                                 |
|------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 1    | Power LED                            | OFF - no power;<br>GREEN - module powered.                                                                               |
| 2    | OPTICAL OUTPUT                       | OFF - no power;<br>GREEN - transmitter optical output signal is within range;<br>RED - no or weak optical output signal. |
| 3    | Optical Power Test Point<br>(OPT TP) | 1 V/mW                                                                                                                   |
| 4    | RF Test Point                        | -20 dB test point for checking the RT output level                                                                       |

## 4.6 Attenuator/Equalizer Pad

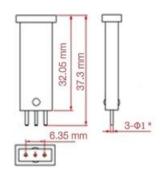



Figure 4-6 Attenuator/Equalizer Pad

Attenuator pad ODN20-ATT-xx is used in both ODN2000/LE2000 in RF output attenuation and equalization. If the pad is used as an equalizer, "xx" indicates an equalization value. If the pad is used as an attenuator, "xx" indicates an attenuation value.

Figure 4-7 shows equalization slope characteristics. If an equalizer value "xx" is set to zero (0 dB equalization), there will be no RF attenuation or frequency-dependent variations in RF output levels. If an equalizer value other than 0 dB is used, there will be some inherent insertion loss introduced along with the equalization slope. The slope value between the lowest ( $b_{45}$ ) and highest ( $b_G$ ) frequencies corresponds to the equalization value. As the use of an equalization value other than 0 dB may cause slight RF output attenuation even at the highest frequency, RF output level at  $b_G$  may be lower than that at  $a_G$ .

Table 4-6 outlines the approximate attenuation introduced by ODN20-ATT-08 and ODN20-ATT-12 across a range of frequencies.

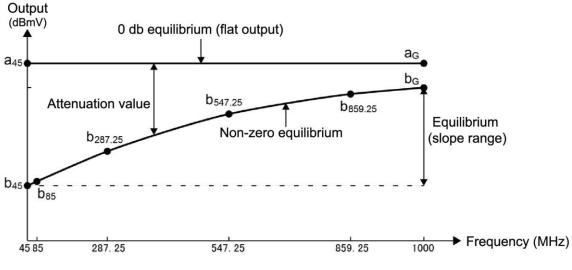
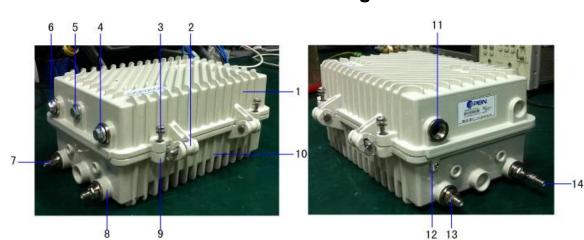
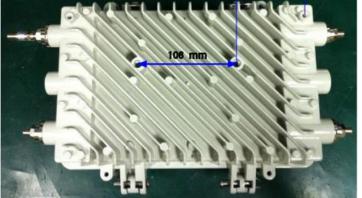




Figure 4-7 Equalization Slope Characteristics


| Pad Type<br>Reference<br>Frequency | ODN20-ATT-08 | ODN20-ATT-12 |
|------------------------------------|--------------|--------------|
| 85 MHz                             | 7.4          | 11.2         |
| 287.25 MHz                         | 5.3          | 7.7          |
| 547.25 MHz                         | 2.8          | 3.8          |
| 859.25 MHz                         | 0.8          | 0.9          |
| 1000 MHz                           | 0.2          | 0.2          |

## Table 4-6 Attenuation (dB) introduced by ODN20-ATT-08 and ODN20-ATT-12 equalizers



## 4.7 External RF Connectors & Mounting Holes





17



Figure 4-8 ODN2000 External RF Connectors & Mounting Holes

Table 4-7 ODN2000 external RF connectors & mounting holes

| # | Part name                | Description |
|---|--------------------------|-------------|
| 1 | Front of the node casing |             |
| 2 | Hinges                   |             |
| 3 | Pedestal mounting bolts  | 4           |

Pacific Broadband Networks

| #  | Part name                            | Description                                                       |
|----|--------------------------------------|-------------------------------------------------------------------|
| 4  | Optical input port                   |                                                                   |
| 5  | Modem port                           |                                                                   |
| 6  | Optical output port                  |                                                                   |
| 7  | RF input port                        | Used in an LE2000 amplifier                                       |
| 8  | 60 Vac power input                   | For 60 V power supply                                             |
| 9  | Mounting holes for lid-to-base bolts | Located on the front and back of the node casing (4 on each side) |
| 10 | Back of the node casing              |                                                                   |
| 11 | 220 Vac power input                  | For 220 V power supply                                            |
| 12 | Ground point                         |                                                                   |
| 13 | Port 2 RF output                     |                                                                   |
| 14 | Port 1 RF output                     |                                                                   |
| 15 | Mounting holes                       | For wall mounting                                                 |
| 16 | Mounting holes                       | For wall mounting (distance between the mounting holes: 106 mm)   |
| 17 | Strand clamps                        | Used for strand mounting and have grooves for suspension cables   |

## **5** Installation

## **5.1 Equipment Inventory**

On receiving your new ODN2000 or LE2000, carefully unpack and examine the contents for any missing or damaged parts (Table 5-1). Refer to your warranty if loss or damage has occurred.

Table 5-1 Packaging content

| ltem                                             | Description | Qty |
|--------------------------------------------------|-------------|-----|
| Device purchased (ODN2000 or LE2000)             |             | 1   |
| Certificate of Performance (includes test result |             | 1   |
| sheet)                                           |             | , i |

## **5.2 Packaging and Transportation**

Use only the original packaging of the ODN2000/LE2000 when transporting.

Keep all boxes and packaging, designed specifically to protect the equipment, for future transport of the ODN2000/LE2000.

## 5.3 Installation

## **5.3.1 Node Installation Pointers**

- A clearance of 50 mm must be left between all sides of the node and any obstruction.
- Avoid installing the node near any sources of water, such as air-conditioning drain outlets or roof gutters. If it must be installed near water, a waterproof board should be installed 35 cm above the node.
- The node MUST be properly grounded.
- Ensure that the attenuator/equalizer pads are installed in the correct orientation and pushed in firmly. Frequency response and RF performance will be affected if the pads are not installed correctly.
- Ensure that the pads are installed in the correct orientation and pushed in firmly. The internal RF PADs within the ODN2000 and LE2000 are terminated with 75 Ω mini-SMB connectors. These connectors must be handled carefully as they can be easily damaged.

## 5.3.2 Mounting

## 5.3.2.1 Strand Mounting

Each ODN2000 node has two strand clamps with grooves (Item 17 in Figure 4-8). The ODN2000 node can be mounted via a suspension cable running through the two clamps.



Figure 5-1 Strand Mounting<sup>1</sup>

### Note:

Do not hang the node from any wires or electrical cables. Use only a dedicated suspension cable that is rated to hold the weight of the node.

## 5.3.2.2 Wall Mounting

An ODN2000 node can be mounted on the wall via two mounting holes (located 106 mm from one another) on the rear of the node. There should be enough clearance left below the node to allow maintenance and troubleshooting.

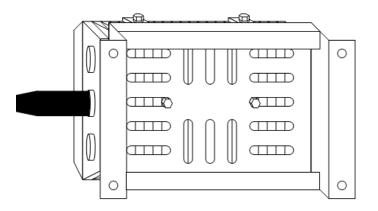



Figure 5-2 Wall Mounting

### Note:

Mounting brackets and associated hardware are NOT supplied by PBN.

<sup>&</sup>lt;sup>1</sup> The figure shows an ODN4P node for illustration purpose; ODN2000 nodes are strand-mounted in the same way.

## 5.3.3 Cable Routing

## 5.3.3.1 Applying AC Power

The ODN2000 may be directly line powered via the dedicated 60V AC power input. When plugging in the power connector, please make sure that the center pin is between 35 and 40 mm in length when measured from the seating area of the connector to the tip of the center pin. If the pin is longer, there is a risk of damaging the ODN2000.

A fuse must be plugged into breaker F4 to provide internal power.

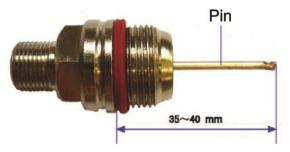





Figure 5-3 The Center Pin of a Connector

Figure 5-4 Fuse

Follow the procedure below to supply 60 Vac AC power to the ODN2000:

- a) After removing the protective cap, insert the pin connector into the ODN2000 power supply port. Ensure that the pin is connected into the power supply on the PCB rated at 60 Vac. Before inserting the connector, affix an O-ring to seal the connection and prevent water from entering.
- b) Tightly screw the connector into the power supply port.
- c) Attach the 60 Vac power adapter cable to the connector.
- d) Ensure that a fuse is inserted into breaker F4.
- e) Verify that the power module status LED is ON (GREEN). GREEN indicates that the power module is on; if the LED indicator is OFF, check for any problems with the power adapter or power supply.
- f) Verify that the forward path receiver and return path transmitter power supply LED indicators (PWR) are ON (GREEN). GREEN indicates that the module is powered; if the LED indicator is OFF, check whether the power module, power adapter, and power supply are functioning normally.

## 5.3.3.2 RF Input/Output Cable Routing

The ODN2000 RF output ports 1 and 2 are used for forward path output signals and return path input signals. External RF connectors should be inserted into these ports. Please make sure that the center pin is between 35 and 40 mm in length when measured from the seating area of the connector to the tip of the center pin (Figure 5-3 in Section 5.3.3.1 Applying AC Power).

If the node is used to supply power to cascaded equipment, insert fuses into breakers F1 and F2 as required for the RF output ports.

#### Note:

If outgoing power is not needed, remove the fuses to avoid damaging any internal components.

## 5.3.4 Optical Stub Cable

## CAUTION:



General Warning

Equipment installers are responsible for the correct installation of optical stub cables, optical fibers, and all RF terminators. Failure to properly adhere to the instructions and recommendations herein may affect RF performance or cause the optical node to fail. This type of damage voids the warranty provided by Pacific Broadband Networks.

Optical connector ferrules should be no longer than 1.5 cm in order not to affect the node operation.

#### Note:

Heat the ODN2000 node prior to installation of optical stub cables. Make sure to run enough optical fiber length inside the node so that it is not taut when opening the case.

The optical modulation index (OMI) of a PBN LTM13 laser transmitter module is 4%<sup>1</sup> (factory setting).

## 5.3.4.1 Optical Input Port Cable

The optical input cable is connected to the ODN-FR via the ODN2000 optical input port. The ODN-FR allows an optical input level between -5dBm and -3dBm. It has OAGC range between -4dBm and -2 dBm and output level of 20 dBmV.

### **Optical Input Port Cable**

Follow the procedure below to install the optical input cable:

- a) Before connecting fiber to the receiver, measure the optical input level with an optical power meter. The optical input level should be between -5 dBm and +3 dBm (level between-2dBm and -2 dBm is recommended). <u>Higher optical input levels may cause damage to the optical receiver tubes.</u>
- b) Insert the optical cable into the ODN2000 optical input port.
- c) Mount the waterproof conduit and place the fiber cable end in the optical fiber module. The sealing O-ring must be on the connector and in good condition. Apply heat shrink tubing or sealing tape.

<sup>&</sup>lt;sup>1</sup> Test conditions: 77 channels, NTSC




Figure 5-5 Optical Stub Cable Sealing

d) Use a multi-meter to measure the actual optical input level at the ODN-FR optical power test point (OPT TP). The conversion from optical input level (W<sub>IN</sub>) in dBm to Volts at the optical input test point (V<sub>TPI</sub>) is:

$$W_{IN} = 10 \lg V_{TPI}$$

- e) Ensure that the optical input level is within the acceptable range. If it is too low or too high (indicated by an ORANGE or RED receiver optical power LED indicator), adjust the optical input level and repeat the steps d-e until it is within the acceptable range (indicated by a GREEN receiver optical power LED indicator).
- f) Measure RF output level at the ODN-FR RF output test point. The forward RF output level should be 20 dBmV.

#### Setting the Forward RF Output Level & Slope

Follow the procedure below to set up the forward RF output level and slope:

- a) ODN-FR RF output is the RF input for the RF amplifier. Factory set to 20 dBmV at 547.25 MHz.
- b) Place equalizers in the "FWD IN EQ", "FWD EQ1", and "FWD EQ2" locations on the RF amplifier. "FWD IN EQ" is the main circuit equalizer and can be simultaneously used for equalization of two output ports. "FWD EQ1" and "FWD EQ2" are branch circuit equalizers and are used separately for equalization of second output ports. Set equalization values to 0 dB to ensure a flat forward RF output level.
- c) Place 0 dB attenuators in the "FWD IN PAD", "FWD PAD1", and "FWD PAD2" locations on the RF amplifier. Measure RF output levels at the "FWD OUT1" and "FWD OUT2" test points and select the desired equalization slope values and characteristics.
- d) Place attenuators in the "FWD IN PAD", "FWD PAD1", and "FWD PAD2" locations on the RF amplifier. Output test point should be 20dB below each of the main output ports. Measure to ensure that the level at this point is no more than 50dBmV at 547.25 MHz.
- e) Measure RF output levels at the "FWD OUT1" and "FWD OUT2" test points to check whether they meet requirements.
- f) If Ports 1 and 2 are used as a forward power feed, please insert fuses into respective locations (F1 and F2).

#### Note:

Please terminate unused port with a 75  $\boldsymbol{\Omega}$  terminator.

#### Setup Example for Forward RF Output Levels & Slope

| Condition |                               | Output Requirements                                            |
|-----------|-------------------------------|----------------------------------------------------------------|
|           |                               | Required output power for Ports 1 & 2 is 45 dBmV at 547.25 MHz |
|           | Optical input level of -1 dBm | Equalization on Ports 1 & 2 is to be 0 dB                      |
|           |                               | Port 1 is used for providing power                             |

The following setup is recommended:

- a) ODN-FR optical input level is set to the nominal level of -1 dBm. ODN-FR RF output level is set to 20 dBmV at 547.25 MHz, i.e., the amplifier's RF input level is 20 dBmV at 547.25 MHz.
- b) Place 0 dB equalizers in the "FWD IN EQ", "FWD EQ1", and "FWD EQ2" locations on the RF amplifier.
- c) Place 0 dB attenuators in the "FWD IN PAD", "FWD PAD1", and "FWD PAD2" locations on the RF amplifier. Measure Port 1 and Port 2 RF output levels at the "FWD OUT1" and "FWD OUT2" test points. For this example, assume the RF levels are found to be 30 dBmV at 547.25 MHz, i.e., RF output levels present at Ports 1 and 2 are 50 dBmV at 547.25 MHz.
- d) Place a 5 dB attenuator in the "FWD IN PAD" location on the RF amplifier and measure RF output levels. For this example, assume the RF levels are found to be 25 dBmV at 547.25 MHz, i.e., RF output levels present at Ports 1 and 2 are 45 dBmV at 547.25 MHz.
- e) Place a 15 Amp fuse in the F1 breaker to allow power to pass through Port 1.

### 5.3.4.2 Optical Output Port Cable

#### Setting the Return RF Input Level & Slope

Prior to connecting the optical cable to the optical output port, use the following procedure to set the return RF input level and slope:

- a) Measure return RF input levels at "RET IN1" and "RET IN2" test points.
- b) Place equalizers in the "RET EQ1" and "RET EQ2" locations on the RF amplifier. "RET EQ1" and "RET EQ2" are branch circuit equalizers that are used separately for equalization of RF input and output signals. Set equalization values to 0 dB to ensure a flat return RF input level.
- c) Place 0 dB attenuators in the "RET PAD1", "RET PAD2", and "RET PAD3" locations on the RF amplifier. Measure return path output levels at the "RET OUT" test point.
- d) Compare RF input and output levels obtained from "RET IN1" and "RET OUT" test points, as well as those obtained from "RET IN2" and "RET OUT" test points. Determine attenuation values and slope characteristics for "RET EQ1" and "RET EQ2" equalizers.

- e) Based on the selected equalization parameters, set the attenuation values for "RET PAD1", "RET PAD2", and "RET PAD3" attenuators to achieve 37 dBmV<sup>1</sup> ODN-RT RF input level. Consider the loss introduced by the return combiner.
- Place attenuators with selected attenuation values in the "RET PAD1", "RET PAD2", and "RET PAD3" locations.
- g) The RF test point on the ODN-RT should be used to verify that the correct RF signal level is being received. If the RF input level deviates considerably from the required level of 37 dBmV, repeat steps e-g.

#### Note:

RF amplifier's return gain is set to 26 dB.

### **Optical Output Port Cable**

Procedure to install the optical output cable:

 a) Prior to connecting the optical cable to the optical output port, use a multimeter to measure the actual optical output level at the ODN-RT optical power test point (OPT TP). The conversion from optical output level (W<sub>OUT</sub>) in dBm to Volts at the optical output test point (V<sub>TPO</sub>) is:

$$W_{OUT} = 10 \lg V_{TPO}$$

- b) Compare the optical output level obtained from the test point with the nominal value set for ODN-RT. If the difference between the two is small, proceed to the next step; if the difference is big, please contact PBN's qualified service personnel.
- c) Connect the optical fiber to the ODN2000 optical output port.
- d) Mount the "waterproof pipe" and place the fiber cable end in the optical fiber module. The sealing O-ring must be on the connector and in good condition. Apply heat shrink tubing or sealing tape (Figure 5-5).

## 5.3.5 Closing the Node

Before commissioning the node, please check that the following screws are firmly and securely tightened.

- Two mounting screws on each optical receiver.
- Two mounting screws on each optical transmitter.
- The mounting screws for any optional modules.
- The 2 main chassis mounting screws.

Some of the module mounting screws have metal spacers. They should be checked to ensure that they are present and are secured so they are screwed all the way in and are touching the module.

<sup>&</sup>lt;sup>1</sup> The optimal RF input level for the return-path transmitter is 37 dBmV at 6% OMI.

When installing a module, tighten the mounting screws in steps.

Prior to closing the node, inspect the surfaces of the metal mating edge and the opposing rubber sealing gasket. The ridge must be continuous and not damaged or scratched in any way. The rubber-sealing gasket must also be in good condition. Ensure all cables and optical fibers are clear of the edges of the lid and base. Refer all repairs to Pacific Broadband Networks' qualified service personnel.

Where an ODN2000 plug-in module is used, spiral binding should be used to bind together the power cable and the two RF cables (Figure 5-7) to reduce the possibility of them being caught between the lid and base when closing.

Once all the above steps are completed, the node can be closed. When closing the node, tighten the mounting screws in the order shown in Figure 5-8  $(1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1)$ .

#### Note:

The IP67 rating of the ODN2000 is dependent on the proper sealing of all external node interfaces. This includes the optical stub cable and all RF connectors.

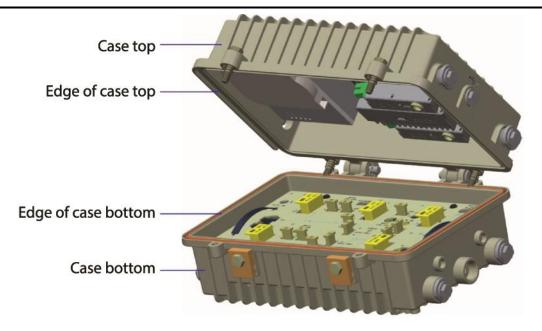



Figure 5-6 ODN2000 Node Casing

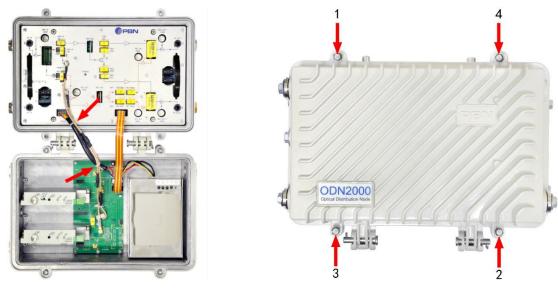



Figure 5-7 Internal Cabling Secured with Cable Ties

Figure 5-8 Screw Tightening Order

## 5.4 Module Installation & Removal

The ODN2000 modules plug into the backplane of the node's circuit board. To avoid causing any damage, be careful with the pins located underneath each module during its insertion or removal.

## 5.4.1 Module Removal

Use the following procedure to remove an ODN2000 module during maintenance or replacement:

- a) Disconnect all cables and wires.
- b) Unscrew the two anchor screws that hold the ODN2000 module in place (Figure 5-9).

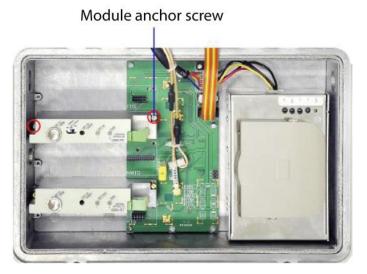



Figure 5-9 Module Anchor Screws

c) Vertically, lift the module firmly. Refrain from using excessive force. The module should be lifted out at ease.

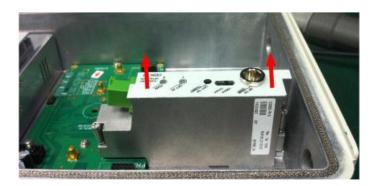
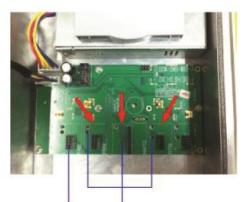




Figure 5-10 Module Removal

## **5.4.2 Module Insertion**

Use the following procedure to install an ODN2000 module during maintenance or replacement:

a) On the backplane of the circuit board in the ODN2000 node's module compartment, locate the white rectangles (pointed to with red arrows in Figure 5-12). The module should be installed into the slot specifically designed for it.



Pin grooves Module locating holes

Figure 5-11 Backplane

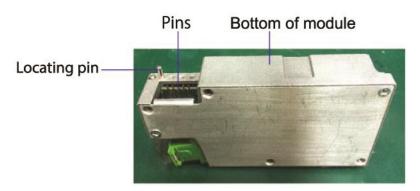



Figure 5-12 Module Locating & Contact Pins

b) Align the sides of the modules and the edges of the white rectangles on the backplane, locating pins and respective holes, contact pins and respective pin grooves.



Figure 5-13 Aligning the Module

- c) The pins should not be obstructed by cables or wires (specifically, the ODN-RT RF port test point cable).
- d) Gently push down on the area of the module directly above the pins. The module should slip into place with ease. Refrain from using excessive force.
- e) Screw in the two anchoring screws.

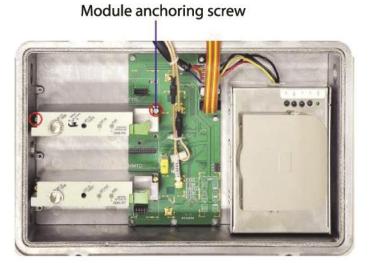



Figure 5-14 Two Anchoring Screws

## **6 Product Warranty**

Pacific Broadband Networks warrants the ODN2000 and LE2000 for a period of one year from the date of shipment. The liability of Pacific Broadband Networks under this warranty is solely limited to repair and replacement.

Pacific Broadband Networks is not liable for DFB Laser failure after 90 days from receipt of item. Any claim for DFB Lasers will be presented to the laser vendor for replacement. Pacific Broadband Networks will make every effort to replace faulty lasers, although the ultimate judgment is at the laser vendor's discretion.

Repairs referred to Pacific Broadband Networks' qualified service personnel must meet the following conditions:

- 1. The warranty registration has been completed and received by Pacific Broadband Networks.
- 2. PBN's helpdesk is promptly notified in writing or by telephone that a failure has occurred or a defect was found.
- 3. PBN has determined that the equipment was not abused, misused, or operated under conditions outside manufacturer's specifications.
- 4. When returning a product, the return authorization number obtained from PBN must be clearly marked on the product or the outside of the shipping container and the package must include all relevant documents.
- 5. The customer is responsible for all shipping and handling charges. C.O.D. and freight collect will not be accepted without prior approval from PBN.

The warranty does not cover the following:

- 1. Products purchased from someone other than PBN or an authorized PBN dealer.
- 2. Damage caused by accident, negligence, misuse, abuse, improper operation, or failure to operate the equipment within the manufacturer's specifications.
- 3. Damage caused by fluctuation in electrical current, lightning, power surges, etc.
- 4. Damage resulting from an overhaul, repair, or attempt to repair caused by someone other than PBN's qualified service personnel.
- 5. Any product for which the serial number has been defaced, modified, or removed.
- 6. Any product that has been opened or modified without prior written permission from PBN.
- 7. Replacement of parts necessitated by normal wear and tear.
- 8. Any consequential or implied damages.



#### Offices:

 Australia, Melbourne:
 Tel. +61-3-8561-1400

 China, Beijing:
 Tel. +86-10-5791-0655

 Americas:
 Tel. +1-888-339-8805

 EMEA, Netherlands:
 Tel. +31-36-536-8011

 Email: support@pbnglobal.com

 Website: www.pbnglobal.com

©2016 Pacific Broadband Networks. All rights reserved